Analysis on Propulsive Performance of Hollow Rotating Detonation Engine with Laval Nozzle

Author:

Zhang Yunzhen1ORCID,Ma John Z.1,Wu Kevin1,Cheng Miao1,Sheng Zhaohua1ORCID,Rong Guangyao1,Shen Dawen1,Wang Jianping1,Zhang Shujie2

Affiliation:

1. Peking University, Beijing 100871, People’s Republic of China

2. Beijing Institute of Astronautical Systems Engineering, 100076 Beijing, People’s Republic of China

Abstract

In the present study, an experimental performance analysis of hollow rotating detonation engines (RDEs) with Laval nozzles is carried out for the first time. Experiments of a hollow rotating detonation engine with a Laval nozzle were performed with a modular RDE at a backpressure condition of 1 atm. Two configurations with area ratios of the outlet throat to the inlet of [Formula: see text] and 2.7 have been tested with gaseous methane/oxygen as propellants. Three normalized metrics, usually used for evaluating the performance of conventional rocket engines, are introduced to analyze the performance deficit between the measured value of an RDE and the ideal value of an isobaric-combustion-based engine. These metrics allow for assessing the entire engine and each component separately. The metric analysis suggests a small outlet-to-inlet area ratio ([Formula: see text]) is detrimental to the propulsive performance. To explain the mechanism, a gas-stratification flowfield model is further proposed. It is found that the unchoked region in the combustible gas layer, which is caused by unchoked injection on the injecting plate, is responsible for the performance deficit of the combustion chamber. This model is then validated by one-dimensional numerical simulations and experimental data. In addition, we also focus on the global performance, including the gross thrust, the specific impulse, and the utilization of the supplied stagnation pressure. The result implies a tradeoff space when choosing an appropriate [Formula: see text].

Funder

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3