Shock Absorber Leakage Impact on Aircraft Lateral Stability During Ground Handling Maneuvers

Author:

Mendoza Lopetegui José Joaquín1ORCID,Papa Gianluca1,Morandini Marco1ORCID,Tanelli Mara1ORCID

Affiliation:

1. Politecnico di Milano, 20133 Milan, Italy

Abstract

Aircraft braking maneuvers are safety-critical on-ground motions that exhibit complex dynamics and significant dependence on system operating conditions. The fundamental interface between the aircraft and the ground is the landing gear. Among the landing gear components, the shock absorbers may be subject to gas leakage during their lifetime, which is an anomaly that could compromise the lateral stability properties of the aircraft on the operating regimes found during braking maneuvers. In this paper, an explicit link is established between main landing gear shock absorber leakage and aircraft lateral stability. To investigate lateral stability, a high-fidelity multibody nonlinear aircraft simulator is developed in a MATLAB/Simulink framework and validated against experimental data. To generate insight into the problem and to quantify shock absorber leakage impact on aircraft lateral stability, two simple but descriptive analytical models are also developed, each one on a different operating mode of the system. The analysis of the models reveals that shock absorber leakage can have a significant effect on aircraft lateral stability, especially at high velocities and highly damped nose wheel steering conditions. The models developed in this work may be used by aircraft control system designers to come up with more effective lateral stability controllers in the event of main landing gear shock absorber leakage.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gain-Scheduled Design of Active Braking Control Systems for Optimized Ground Handling in Aircraft;2024 European Control Conference (ECC);2024-06-25

2. Data-driven Health Monitoring and Anomaly Detection in Aircraft Shock Absorbers;2023 IEEE International Conference on Prognostics and Health Management (ICPHM);2023-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3