Numerical Investigation of Double Transonic Dip Behaviors in Supercritical Airfoil Flutter

Author:

Miyake Toma1,Terashima Hiroshi1

Affiliation:

1. Hokkaido University, Sapporo 060-8628, Japan

Abstract

This numerical study examines the behavior of the double transonic dip with a supercritical airfoil. A two-dimensional model of a wing section with two degrees of freedom was used for the investigation. The flowfield was modeled by solving the unsteady Reynolds-averaged compressible Navier–Stokes equations using the Spalart–Allmaras turbulence model, and the equations of motion were solved to determine the structural dynamics. The present model successfully captured the behavior of the double transonic dip on the flutter boundary of the supercritical airfoil, which contrasts with the well-known behavior of the single transonic dip exhibited by conventional symmetric airfoils. Although the mechanism of the first dip at a lower Mach number corresponded to that of the well-known conventional transonic dip, the second dip at a higher Mach number was uniquely observed for the supercritical airfoil. The analysis established that, for the supercritical airfoil, the motion of the shock wave over the upper surface was significantly affected by the behavior of the boundary layer around the highly cambered aft region of the lower surface during flutter. The behavior of the boundary layer involving the separation and reattachment over the lower surface caused the unusual shock wave motion over the upper surface under the Mach number condition at the bottom of the second dip. This motion exerted negative damping forces on the motion of the airfoil, thereby becoming the primary contributor to generating the second dip experienced by the supercritical airfoil.

Funder

JST SPRING

f3 Engineering Education and Research Center

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Reference24 articles.

1. MykytowW. J. “A Brief Overview of Transonic Flutter Problems,” Unsteady Airloads in Separated and Transonic Flow, AGARD CP-226, Neuilly-Sur-Seine, France, April 1977, pp. 11-1–11-11.

2. COMPARISON OF SUPERCRITICAL AND CONVENTIONAL WING FLUTTER CHARACTERISTICS

3. On the Transonic-Dip Mechanism of Flutter of a Sweptback Wing

4. Transonic dip mechanism of flutter of a sweptback wing. II

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3