Nonlinear Manifold Learning and Model Reduction for Transonic Flows

Author:

Zheng Boda1,Yao Weigang2ORCID,Xu Min1

Affiliation:

1. Northwestern Polytechnical University, 710072 Xi’an, People’s Republic of China

2. De Montfort University, Leicester, England LE1 9BH, United Kingdom

Abstract

It is aspirational to construct a nonlinear reduced-order model (ROM) with the ability to predict computational fluid dynamics (CFD) solutions accurately and efficiently. One major challenge is that the nonlinearity cannot be captured adequately by interpolation algorithm in low-dimensional space. To preserve the nonlinearity of CFD solutions for transonic flows, a new ROM is presented by integrating manifold learning into a constrained optimization, whereby a neighborhood preserving mapping is constructed by locally linear embedding (LLE) algorithm. Reconstruction errors are minimized in LLE by solving a least square problem subject to weight constraints. A loss function is proposed in the constrained optimization to preserve the geometric properties between high-dimensional space and low-dimensional manifolds. The proposed ROM is validated to predict nonlinear transonic flows over RAE 2822 airfoil and undeflected NASA Common Research Model with aspect ratio 9, in which nonlinearities are induced by shock waves. All results confirm that the ROM replicates CFD solutions accurately at fraction of the cost of CFD calculation or the full-order modeling.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3