Multi-Objective Reverse Design and Pattern Analysis of Solid Propellant Grains

Author:

Li Wentao1ORCID,Li Wenbo2ORCID,He Yunqin1,Liang Guozhu1

Affiliation:

1. Beihang University, 102206 Beijing, People’s Republic of China

2. Tsinghua University, 100084 Beijing, People’s Republic of China

Abstract

Solid propellant grain reverse design aims to discover optimal grain geometries by shape optimization methods to match the desired solid motor performance curves. To maximize the performance matching degree and the propellant loading fraction simultaneously, this study develops a multi-objective evolutionary neural network for the grain reverse design, where the burning surface regression calculation is efficiently employed using the fast-sweeping method. Then, grain shape feature extraction and pattern analysis are achieved through image singular value decomposition and self-organizing mapping, respectively. Finally, the design case of a dual-thrust motor and a Mars ascent vehicle show that the method can well balance the performance-matching degree and propellant loading fraction. Moreover, without any training data set, it can generate dozens of grain shape patterns, highlighting their diversity and providing new ideas for solid rocket motor designers. Our method can offer a new pathway for the research field of solid rocket motor design.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3