Distributed Least Absolute Deviations Estimation

Author:

Prabhu Kaushik,Alfriend Kyle T.,Rahmani Amir,Hadaegh Fred Y.

Abstract

Distributed algorithms are essential for reducing communication costs, computational complexity, and memory requirements while performing collaborative estimation using multi-agent systems. Additionally, robustness in estimators is important to prevent performance degradation when the measurement noise is non-Gaussian. Least absolute deviations estimators are known to be robust in the presence of gross errors or outliers in the measurements. To this end, we develop the distributed least absolute deviations (D-LAD) estimator for linear systems whereby the agents iteratively exchange information with their immediate neighbors via single-hop communications to gain a network-wide consensus on the estimates. Additionally, the D-LAD algorithm is implemented in a nonlinear framework to solve the problem of distributed orbit determination of a target body using a formation of spacecraft. Numerical simulations demonstrating the effectiveness of the D-LAD estimator in linear and nonlinear settings are provided.

Funder

Jet Propulsion Laboratory

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3