Flame Dynamics in the Combustion Chamber of Hybrid Rocket Using Multiangle Chemiluminescence

Author:

Luo Jiaxiao1,Zhang Zelin1,Lin Xin1,Wang Zezhong1,Kun Wu1,Zhou Gongxi1,Zhang Senhao1,Li Fei1,Yu Xilong1,Wu Jie2

Affiliation:

1. State Key Laboratory of High Temperature Gas Dynamics, Chinese Academy of Science, 100190 Beijing, People's Republic of China

2. Science and Technology on Optical Radiation Laboratory, 100845 Beijing, People's Republic of China

Abstract

The flame dynamics in the combustion chamber of a hybrid rocket motor were visualized using novel chemiluminescence imaging. A multidirectional visualization system employing [Formula: see text] endoscopes generated images based on methylidyne chemiluminescence (CH*), with one endoscope in the precombustion chamber and two in the postcombustion chamber. Images were collected with a high-speed camera using a 1 ms exposure and a 1 kHz frame rate. Fuel grains having a helical or a conventional circular port structures were assessed, and combustion trials were conducted using a laboratory-scale hybrid rocket motor with oxygen as the oxidizer at mass flow rates from 10.43 to [Formula: see text]: equivalent to combustion chamber pressures ranging from 0.7 to 1.24 MPa. Flame structures were observed during the ignition, combustion, and shutdown stages; and the helical grain generated a larger, more intense flame zone. A proper orthogonal decomposition analysis showed that the helical grains also produced a greater degree of turbulence and stronger oscillations. These results confirm that a helical structure increases the flow turbulence and convective heat transfer in the combustion chamber. These effects lead to higher regression rates and better mixing efficiency that may, in turn, provide greater combustion efficiency at optimized oxidizer/fuel ratios.

Funder

National Natural Science Foundation of China, the Key-Area Research and Development Program of Guangdong Province and Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3