Relative Motion in the Velocity Frame for Atmospheric Entry Trajectories

Author:

Albert Samuel W.1ORCID,Schaub Hanspeter1ORCID

Affiliation:

1. University of Colorado Boulder, Boulder, Colorado 80303

Abstract

Relative motion models provide a method of directly describing the position and velocity of a deputy spacecraft with respect to a chief spacecraft. Common approaches such as the Clohessy–Wiltshire equations describe relative motion in a rotating orbit frame aligned with the radial position vector of the chief, and intuitive solutions exist in this frame for circular or near-circular chief orbits. However, as eccentricity of the chief orbit increases, the along-track and velocity directions become less aligned and the orbit frame becomes less intuitive. This work revisits several key relative motion descriptions in the orbit frame and reformulates them to describe motion in the velocity frame, which provides an intuitive description of motion with respect to the flight path. Highly elliptic and hyperbolic chief motions are considered, which are common for atmospheric entry trajectory scenarios. These models are combined with the extended Allen–Eggers equations into a procedure for analytically estimating the offset in landing location for formation flying on an atmospheric entry trajectory. Three representative examples are given and compared with simulation, and range offset predictions are within 6% of total chief range in all cases.

Funder

National Aeronautics and Space Administration

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Reference35 articles.

1. Comprehensive Survey and Assessment of Spacecraft Relative Motion Dynamics Models

2. BurnettE. R. “Novel Dynamics and Control Formulations for Multi-Spacecraft Formation Flying, Rendezvous, and Proximity Operations,” Ph.D. Thesis, Univ. of Colorado, Boulder, CO, 2021.

3. Researches in the Lunar Theory

4. Terminal Guidance System for Satellite Rendezvous

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3