Homogeneous Equilibrium Modeling for Subcritical Flows in Liquid Rocket Engine Cooling Systems

Author:

Fiore MatteoORCID,Nasuti FrancescoORCID,Pizzarelli MarcoORCID,Ierardo Nicola

Abstract

During off-design operations of liquid rocket engines, the coolant operating conditions can easily extend from the subcritical to the supercritical regime. As a matter of fact, it is very useful to have a single software able to study the flow in this range of operating conditions, providing reliable simulations that are reasonably quick and able to accurately estimate and assess the increase in coolant temperature along the channel and the wall temperature field. This objective is pursued by extending an established approach for the study of supercritical flows to the case of subcritical heating, where a two-phase flow may occur. This is done by exploiting the so-called homogeneous equilibrium model, which has been shown to be sufficiently predictive and accurate for specific applications. With the aim of demonstrating and discussing the potential and limitations of such a single software approach, analyses are conducted on different test cases where two-phase flow is induced by cavitation or flow boiling, and results are compared with those of analytical models and experimental data. It is found that, in addition to some intrinsic limitations in the analysis of subcooled boiling flows, satisfactory agreement with experimental data is obtained in the post-critical-heat-flux regime.

Funder

Ministero dell'Università e della Ricerca

European Space Agency

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3