Investigation of Compressor Cascade Flow Using Physics-Informed Neural Networks with Adaptive Learning Strategy

Author:

Li Zhihui1,Montomoli Francesco1,Sharma Sanjiv1

Affiliation:

1. Imperial College London, London, England SW7 2AZ, United Kingdom

Abstract

In this study, we utilize the emerging physics-informed neural networks (PINNs) approach for the first time to predict the flowfield of a compressor cascade. Different from conventional training methods, a new adaptive learning strategy that mitigates gradient imbalance through incorporating adaptive weights in conjunction with a dynamically adjusting learning rate is used during the training process to improve the convergence of PINNs. The performance of PINNs is assessed here by solving both the forward and inverse problems. In the forward problem, by encapsulating the physical relations among relevant variables, PINNs demonstrate their effectiveness in accurately forecasting the compressor’s flowfield. PINNs also show obvious advantages over the traditional computational fluid dynamics (CFD) approaches, particularly in scenarios lacking complete boundary conditions, as is often the case in inverse engineering problems. PINNs successfully reconstruct the flowfield of the compressor cascade solely based on partial velocity vectors and near-wall pressure information. Furthermore, PINNs show robust performance in the environment of various levels of aleatory uncertainties stemming from labeled data. This research provides evidence that PINNs can offer turbomachinery designers an additional and promising option alongside the current dominant CFD methods.

Funder

European Union’s Marie Skłodowska-Curie Actions Individual Fellowship

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3