Edge-Enhanced Attentions for Drone Delivery in Presence of Winds and Recharging Stations

Author:

Liu Ruifan1,Shin Hyo-Sang1ORCID,Tsourdos Antonios1ORCID

Affiliation:

1. Cranfield University, Bedfordshire, England MK43 0AL, United Kingdom

Abstract

Existing variants of vehicle routing problems have limited capabilities in describing real-world drone delivery scenarios in terms of drone physical restrictions, mission constraints, and stochastic operating environments. To that end, this paper proposes a specific drone delivery problem with recharging (DDP-R) characterized by directional edges and stochastic edge costs subject to wind conditions. To address it, the DDP-R is cast into a Markov decision process over a graph, with the next node chosen according to a stochastic policy based on the evolving observation. An edge-enhanced attention model (AM-E) is then suggested to map the optimal policy via the deep reinforcement learning (DRL) approach. The AM-E comprises a succession of edge-enhanced dot-product attention layers and is designed with the aim of capturing the heterogeneous node relationship for DDP-Rs by incorporating adjacent edge information. Simulations show that edge enhancement facilitates the training process, achieving superior performance with less trainable parameters and simpler architecture in comparison with other deep learning models. Furthermore, a stochastic drone energy cost model in consideration of winds is incorporated into validation simulations, which provides a practical insight into drone delivery problems. In terms of both nonwind and windy cases, extensive simulations demonstrate that the proposed DRL method outperforms state-of-the-art heuristics for solving DDP-Rs, especially at large sizes.

Funder

Engineering and Physical Sciences Research Council

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3