Affiliation:
1. Cranfield University, Cranfield, England MK43 0AL, United Kingdom
2. Norwegian University of Technology and Science, 7034 Trondheim, Norway
Abstract
This paper considers the situation where a small satellite shall autonomously rendezvous with a tumbling object in a circular low Earth orbit (LEO) and derives a path-based model predictive controller that uses the docking point state and position of the chaser to guide it to a safe docking autonomously. The strategy embeds collision avoidance elements and reduces the computational effort for calculating the pulses to be provided by the thrusters through opportune algebraic manipulations, a Runge–Kutta 4 propagation method using linearized state transition matrices, and implicit embedding of dynamically equivalent thrust models, leading to constant state propagation matrices. Furthermore, the inputs design optimization problem and the embedded collision avoidance scheme are modeled and explicitly crafted as convex problems, contributing positively to low computational requirements. The docking and collision avoidance capabilities of the proposed scheme are extensively tested in an environment that accounts for all the perturbations relevant to LEO frameworks, for realistic thrust schemes, and for uncertainties in the measurement. Numerical results assess which tumbling objects can be docked or not by means of the proposed schemes as a function of the tumbling rates versus the thrust capabilities and hardware uncertainty of the docker.
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献