Koiter–Newton Reduced-Order Method Using Mixed Kinematics for Nonlinear Buckling Analysis

Author:

Liang Ke1,Mu Jiaqi1,Yin Zhen1

Affiliation:

1. Northwestern Polytechnical University, 710072 Xi’an, People’s Republic of China

Abstract

The Koiter–Newton method improves the computational efficiency of nonlinear buckling analysis; however, the construction of reduced-order models using fully nonlinear kinematics is still a tedious and time-consuming work. In this paper, the Koiter–Newton reduced-order method using mixed nonlinear kinematics is presented for the geometrically nonlinear buckling analysis of thin-walled structures. Strain energy variations up to the fourth order were achieved using mixed kinematics for the improved Koiter theory. Corotational kinematics, which is inconvenient for high-order variations, was applied to calculate the first- and second-order variations for the internal force and tangent stiffness, respectively, whereas the third- and fourth-order strain energy variations were facilitated by explicit algebraic formulations using updated von Kármán kinematics. A reduced-order model with [Formula: see text] degrees of freedom was established, of which [Formula: see text] perturbation loads were considered to make the method applicable for buckling problems. The geometrically nonlinear response was traced using a predictor–corrector strategy by combining the nonlinear prediction solved by the reduced-order model and the correction using Newton iterations. Numerical examples of structures with various buckling behaviors demonstrate that the performance of the proposed method is not obviously affected by using simplified kinematics, and sometimes it even exhibits a superior capability for path-following analysis.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3