Improved Model for Flexible Flapping Wings: Considering Spanwise Twisting and Bending

Author:

Yang Feng Liu1,Chen Long1ORCID,Wang Yan Qing1

Affiliation:

1. Northeastern University, 110819 Shenyang, People’s Republic of China

Abstract

Insect wings and biomimetic wings in flapping-wing micro air vehicles (FWMAVs) are flexible and subject to passive deformations, including spanwise twisting and bending. This raises a typical bilateral fluid–structure interaction (FSI) issue, which is conventionally solved based on combined computational fluid dynamics (CFD) and computational solid dynamics (CSD) methods. To reduce the computational cost of this FSI issue while maintaining a reasonable accuracy, a theoretical model with improved adaptability is proposed here. The improvement results from the consideration of spanwise bending: the distribution of which is formulated by a quadratic polynomial. The aerodynamic force is approximated by a predictive quasi-steady aerodynamic model based on the blade element theory. The FSI iteration at a time step is converged within 0.5 s in our model, whereas a traditional CFD–CSD solution takes about 30 s. Compared to our previous model, the current model can better match the experimental measurements of insect wings. Further analysis reveals that considering spanwise bending affects the stiffness design of flexible flapping wings quantitatively. To maintain a high lift efficiency, the structural stiffness of the wing should be appropriately decreased. Our model provides a refined tool for the wing design in FWMAVs and can promote the development of FWMAVs.

Funder

Department of Science and Technology of Liaoning Province

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Reference38 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3