Generic Modal Design Variables for Efficient Aerodynamic Optimization

Author:

Kedward Laurence J.1,Allen Christian B.1,Poole Daniel J.1,Rendall Thomas C. S.1

Affiliation:

1. University of Bristol, Bristol, England BS8 1TR, United Kingdom

Abstract

Orthogonal modes are an effective method for aerodynamic shape optimization due to their excellent design space compactness; however, all existing methods are generated from a database of representative geometry. Moreover, application to high-fidelity design spaces is not possible because high-frequency shape components are insufficiently bounded, leading to nonsmooth and oscillatory geometries. In this work, a new generic methodology for generating orthogonal shape modes is presented based on a purely geometric derivation, eliminating the need for geometric training data. The new method is a further development of the gradient-limiting method developed previously for constraining the design space in a geometrically meaningful way to reduce the effective degrees of freedom and improve optimization convergence rate and final result. Here, the gradient-limiting methodology is reformulated by transforming the constraints directly onto design variables to produce orthogonal shape modes with equivalent constraints for ensuring smooth and valid iterates. The new generic methodology requires no training data, can be applied to arbitrary topologies using different boundary conditions, and naturally includes translational modes as part of the orthogonal basis. When applied to two standard aerodynamic test cases, the new method has superior performance compared to library-derived modes. Importantly, the optimization convergence rate is independent of the number of design variables, and the optimized objective at high design fidelities is greatly improved by avoiding local minima corresponding to spurious geometries. A nonstandard test case is demonstrated, for which traditional library modes are not useable due to nontrivial topology, and it is shown to benefit from the high-fidelity design space and translational mode made possible with the novel methodology.

Funder

Engineering and Physical Sciences Research Council

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Reference31 articles.

1. Gradient-Limiting Shape Control for Efficient Aerodynamic Optimization

2. ReutherJ.JamesonA. “A Comparison of Design Variables for Control Theory Based Airfoil Optimization,” NASA CR-199151, 1995, https://ntrs.nasa.gov/citations/19960001644 [retrieved Nov. 2022].

3. Influence of Shape Parameterization on a Benchmark Aerodynamic Optimization Problem

4. Pros & Cons of Airfoil Optimization

5. Metric-Based Mathematical Derivation of Efficient Airfoil Design Variables

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3