Moving Morphable Multi Components Introducing Intent of Designer in Topology Optimization

Author:

Otsuka Keisuke1ORCID,Dong Shuonan1ORCID,Kuzuno Ryo1,Sugiyama Hiroyuki2,Makihara Kanjuro1

Affiliation:

1. Tohoku University, Sendai 980-8579, Japan

2. University of Iowa, Iowa City, Iowa 52242

Abstract

Topology optimization based on moving morphable components efficiently generates a topology that is expressed by a few geometrical design variables. However, conventional moving morphable components have three problems: lack of [Formula: see text] continuity between components, difficulty in describing a smooth rollup shape, and difficulty in generating a rigid joint to an optimized topology. In this study, a novel topology optimization framework was developed by introducing theories devised for multibody analysis. First, an adaptive moving morphable component based on absolute nodal coordinate formulation was proposed. Because both the position and gradient are used as design variables, [Formula: see text] continuity is ensured. Second, a position and gradient connection algorithm leveraging the linear constraint of the absolute nodal coordinate formulation was proposed to describe the smooth rollup shape. Third, a rigid joint was generated by introducing the gradient constraint equation in an optimizer. The developed framework exhibited superior convergence as compared with the conventional one in the benchmark short beam problem. It successfully generated an optimal topology with the intent of a designer (that is, designer-selected topology continuity and rigid joints), which facilitated the assembly and manufacturing of topologically optimized structural members to construct an entire aerospace structure.

Funder

Ebara Hatakeyama Memorial Foundation

Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures

Iwatani Naoji Foundation

Institute of Fluid Science, Tohoku University

TEPCO Memorial Foundation

Japan Society for the Promotion of Science

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3