Kinetic Simulation of Nozzle Flow in a Micronewton-Class Cold Gas Thruster

Author:

Sun Wenjin1,Liu Xuhui,Long Jun,Wang Xudong,Sun Quanhua,Huang Heji,Li Yong2,Hu Yuan1ORCID

Affiliation:

1. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, People’s Republic of China

2. Beijing Institute of Control Engineering, 100190 Beijing, People’s Republic of China

Abstract

Many scientific space missions need highly precise attitude and orbit control or ultrafine drag compensation, which relies on the variable-thrust propulsion technology operating at the micronewton level. Cold gas thruster (CGT) is a very promising solution, mainly because of its high reliability. One of the keys to the success of micronewton variable-thrust CGT is to understand the flow in its nozzle, whose configuration is much more complex than traditional CGT nozzles. This paper applies kinetic-based multiscale models to investigate the gas flow in the complex nozzle of a micronewton variable-thrust CGT. The simulations reveal that the flow simultaneously experiences all kinds of regimes from continuum to free molecular. The continuum breakdown is likely to occur near the throat region due to large gradients of flow variables and in the expander due to low gas density. Frictional choking is observed, and the nozzle length can be optimized to improve the thruster performance. Nozzle performance measures such as thrust, discharge coefficient, and thrust efficiency are found to change only with the throat Knudsen number [Formula: see text]. The performance curves can be divided into two sections at [Formula: see text], and thereby an empirical piecewise formula for thrust prediction is proposed.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3