Orthogonal Approximation of Invariant Manifolds in the Circular Restricted Three-Body Problem

Author:

Kelly Patrick1ORCID,Junkins John L.1,Majji Manoranjan1

Affiliation:

1. Texas A&M University, College Station, Texas 77843-3141

Abstract

Methods to parameterize and approximate the hyperbolic invariant manifolds of particular solutions in the circular restricted three-body problem (CR3BP) are presented in this paper. Analytical representations obtained from these manifold approximations are instrumental in the synthesis of optimal trajectories for cislunar transport. A multivariate Chebyshev series is used to approximate the surfaces, thereby serving as tractable parametric representations of the complex properties of motion. It is demonstrated that the continuum of ballistic capture trajectories and their associated sensitivities on the manifold can be realized in functional form using simple algebraic operations. Two applications making use of the Chebyshev manifold approximations as a terminal constraint surface are presented. The first is a low-thrust trajectory optimization problem formulated such that the optimal free final state lying on the manifold is determined as an additional set of design parameters. The second is a guidance law designed to target the manifold in the vicinity of the nominal patch point. Each of these methods takes advantage of the Chebyshev approximations to provide additional flexibility for mission design in multibody dynamic environments. These applications offer tremendous optimism about the utility of function approximation methods in arriving at a formal representation for the invariant manifolds in the three-body problem for efficient generation of optimal trajectories.

Funder

Air Force Research Laboratory

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3