Characteristics of Shock-Induced Boundary-Layer Separation on Nacelles Under Windmilling Diversion Conditions

Author:

Boscagli LucaORCID,MacManus David,Tejero Fernando,Sabnis KshitijORCID,Babinsky H.,Sheaf Christopher T.1

Affiliation:

1. Installation Aerodynamics, Rolls-Royce plc, Derby, England DE24 8BJ, United Kingdom

Abstract

The boundary layer on the external cowl of an aeroengine nacelle under windmilling diversion conditions is subjected to a notable adverse pressure gradient due to the interaction with a near-normal shock wave. Within the context of computational fluid dynamics (CFD) methods, the correct representation of the characteristics of the boundary layer is a major challenge in capturing the onset of the separation. This is important for the aerodynamic design of the nacelle, as it may assist in the characterization of candidate designs. This work uses experimental data obtained from a quasi-2D rig configuration to provide an assessment of the CFD methods typically used within an industrial context. A range of operating conditions are investigated to assess the sensitivity of the boundary layer to changes in inlet Mach number and mass flow through a notional windmilling engine. Fully turbulent and transitional boundary-layer computations are used to determine the characteristics of the boundary layer and the interaction with the shock on the nacelle cowl. The correlation between the onset of shock-induced boundary-layer separation and the preshock Mach number is assessed, and it was found that the CFD is able to discern the onset of boundary-layer separation.

Funder

Cleansky

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3