Conceptual Design of Small-Sized Thruster Using Laser Ignition of High-Energy Monopropellant

Author:

Itouyama Noboru1,Wada Asato2,Habu Hiroto2,Sago Yoshimichi3

Affiliation:

1. Nagoya University, Nagoya 464-8601, Japan

2. Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan

3. Kawasaki Heavy Industries, Ltd., Kakamigahara 504-8710, Japan

Abstract

Ammonium dinitramide (ADN)-based energetic ionic liquid propellants (ADN-EILPs) present considerable potential as monopropellants due to high energy density, high thermal/chemical stability, and low toxicity. Consequently, a chemical thruster system based on ADN-EILPs can be employed in the development of high-performance ultrasmall/small satellites. However, the characteristics of the ADN-EILPs present various problems in their ignition during the thruster development. To solve this problem, the authors have previously achieved the continuous-wave (CW) laser ignition of ADN-EILPs using laser absorbers composed of carbon wools. However, the conventional propellant injection of ADN-EILPs with carbon wool using high-pressure gas faces several limitations. Therefore, a propellant feed system suited for the ignition method is proposed here, as well as a conceptual model of a 0.5 U/0.5 N-class thruster operated by the CW laser ignition of ADN-EILPs ([Formula: see text]). Additionally, an attempt is made to manufacture a laboratory model (LM) thruster, and its fundamental operation properties are determined. The future research implications of this study include the further observation of the combustion of the decomposed gas before its emission from the throat of the LM thruster, along with the further development of the propellant feeding system proposed in this study and the hot-fire tests performed for the feeding systems.

Funder

Japan Society for the Promotion of Science

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3