Affiliation:
1. Beijing Institute of Technology, 100081 Beijing, People’s Republic of China
2. University of Missouri, Columbia, Missouri 65211
Abstract
This paper investigates the three-dimensional (3D) spatial–temporal cooperative guidance problem for multiple missiles with time-varying speeds, which is addressed by a progressive design strategy. First, the zero miss distance and desired impact directions are realized by a 3D vector impact angle control guidance (IACG) law whose time-to-go is predicted accurately and efficiently by a numerical algorithm. Then, by introducing an implicit trajectory-to-go function, the time-to-go control mechanism is clearly revealed under missile speed variation. Accordingly, a coordinated biased term is added to the 3D vector IACG law to ensure a simultaneous attack. Finally, considering the seeker’s field-of-view (FOV) limit, the resultant cooperative guidance law is further augmented by another biased term to prevent the lead angle from exceeding its upper bound. Unlike similar existing results, the proposed one can satisfy multiple complex spatial–temporal constraints without active speed control, thereby manifesting great practical significance. Several numerical simulations are provided to show the effectiveness and advantages of the proposed cooperative guidance law.
Funder
National Science Fund for Distinguished Young Scholars of China
National Natural Science Foundation of China
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献