Three-Dimensional Spatial–Temporal Cooperative Guidance Without Active Speed Control

Author:

Dong Wei1ORCID,Deng Fang1,Wang Chunyan1,Wang Jianan1ORCID,Xin Ming2ORCID

Affiliation:

1. Beijing Institute of Technology, 100081 Beijing, People’s Republic of China

2. University of Missouri, Columbia, Missouri 65211

Abstract

This paper investigates the three-dimensional (3D) spatial–temporal cooperative guidance problem for multiple missiles with time-varying speeds, which is addressed by a progressive design strategy. First, the zero miss distance and desired impact directions are realized by a 3D vector impact angle control guidance (IACG) law whose time-to-go is predicted accurately and efficiently by a numerical algorithm. Then, by introducing an implicit trajectory-to-go function, the time-to-go control mechanism is clearly revealed under missile speed variation. Accordingly, a coordinated biased term is added to the 3D vector IACG law to ensure a simultaneous attack. Finally, considering the seeker’s field-of-view (FOV) limit, the resultant cooperative guidance law is further augmented by another biased term to prevent the lead angle from exceeding its upper bound. Unlike similar existing results, the proposed one can satisfy multiple complex spatial–temporal constraints without active speed control, thereby manifesting great practical significance. Several numerical simulations are provided to show the effectiveness and advantages of the proposed cooperative guidance law.

Funder

National Science Fund for Distinguished Young Scholars of China

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3