Conceptual Development of CubeSat Missions with GREATCUBE+: Methodology and Possible Applications

Author:

Girardello Carlo1ORCID,Scharlemann Carsten2,Treberer-Treberspurg Wolfgang2,Trenker Markus2,Obertscheider Christoph2,Nair Radhakrishnan Anand2,Tajmar Martin1

Affiliation:

1. Technical University of Dresden, Dresden, 01069 Saxony, Germany

2. University of Applied Sciences Wiener Neustadt, Wiener Neustadt, 2700 Niederösterreich, Austria

Abstract

CubeSats have a 65% success rate. Failures derive from design mistake or components malfunctions. To improve the success rate, Technical University of Dresden and FHWN (University of Applied Sciences Wiener Neustadt) developed GREATCUBE+, a software tool for the conceptual design of CubeSats. Its layered structure comprises three levels: empirical, where successfully flown missions are used for an initial tradeoff; analytical, where a design refinement is performed; and numerical, for the final assessment of the proposed architecture. The tool provides teams with information related to commercial off-the-shelf products which will satisfy the mission requirements. To turn this software into a universally applicable tool, it is possible to perform the design of CubeSat mission with many payload’s typologies such as attitude determination and control subsystem, telemetry telecommunication and command, onboard computer, propulsion unit and technology demonstration or scientific payloads. GREATCUBE+ has been validated using the information of existing CubeSats as baseline for its simulation. The achievable accuracy when comparing the simulated outcomes and the real design is of almost 100% for volumes, 90% for masses, and 80% for power generation. By implementing this tool during the conceptual development phase, it is hoped that teams could benefit in reliability thanks to the usage of flight proven equipment recommended via GREATCUBE+ together with a quicker development time.

Funder

Institute of Science and Technology Austria

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Reference22 articles.

1. Towards the Thousandth CubeSat: A Statistical Overview

2. JacklinS. A. “Small-Satellite Mission Failure Rates,” NASA/TM-2018-220034, March 2019.

3. Improving CubeSat reliability: Subsystem redundancy or improved testing?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3