Sparse Pressure-Based Machine Learning Approach for Aerodynamic Loads Estimation During Gust Encounters

Author:

Chen Dashuai,Kaiser FriederORCID,Hu JiaCheng,Rival David E.ORCID,Fukami KaiORCID,Taira KunihikoORCID

Abstract

Estimation of aerodynamic loads is a significant challenge in complex gusty environments due to the associated complexities of flow separation and strong nonlinearities. In this study, we explore the practical feasibility of multilayer perceptron (MLP) for estimating aerodynamic loads in gusts, when confounded by noisy and spatially distributed sparse surface pressure measurements. As a demonstration, a nonslender delta wing experiencing various gusts with different initial and final conditions is considered. Time-resolved lift and drag, and spatially distributed sparse surface pressure measurements are collected in a towing-tank facility. The nonlinear MLP model is used to estimate gust scenarios that are unseen in training progress. A filtering process allows us to examine the fluctuation of the dynamic response from the pressure measurements on the MLP. Estimation results show that the MLP model is able to capture the relationship between surface pressure and aerodynamic loads with a minimum quantity of learning samples, delivering accurate estimations, despite the slightly large errors for the cases at the boundary of the datasets. The results also indicate that the dynamic response of the pressure measurements has an influence on the learning of MLP. We further utilize gradient maps to perform a sensitivity analysis, so as to evaluate the contribution of the pressure data to the estimation of gust loads. This study reveals the significant contribution of the sensors located near the leading edge and at the nose of the delta wing. Our findings suggest the potential for an efficient sensor deployment strategy in data-driven aerodynamic load estimation.

Funder

Air Force Office of Scientific Research

U.S. Department of Defence Vannevar Bush Faculty Fellowship

UCLA-Amazon Science Hub for Humanity and Artificial Intelligence

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3