Similarity and Scaling in a Liquid-Fuel Ramjet Combustor

Author:

Riska Elisabeth1,Gany Alon1

Affiliation:

1. Technion–Israel Institute of Technology, 32000 Haifa, Israel

Abstract

Liquid-fuel ramjets (LFRJs) exhibit high specific impulse (compared to rockets) due to ambient air intake for combustion and rely on storable liquid fuel at controllable mass flow rates. In this investigation, we perform a similarity analysis of an LFRJ combustor in order to determine parameters that can be applied to predict the behavior of an engine of any magnitude on the basis of test results obtained from engines of different scales. Similarity analysis accounting for geometry, transport phenomena, liquid-fuel dynamics, and chemistry is conducted. It defines a series of similarity rules resulting in pressure–diameter scaling. The scaling model was evaluated using Cantera chemical kinetics software and the Hybrid Chemistry Jet Propellant-8 liquid-fuel reaction mechanism, transport properties, and thermodynamic data. It simulates the combustion dynamics as those of a perfectly stirred reactor in order to determine the effects of the pressure and combustor size on combustion efficiency via the degree of reaction completion at various residence times. The simulation confirmed our scaling prediction that, for operating conditions where chemical kinetics are the main factor affecting combustion efficiency, we require pressures that are inversely proportional to the combustor dimensions.

Funder

ADRI - Advanced Defense Research Institute, Technion

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Reference24 articles.

1. Numerical Analysis of Integrated Liquid Ramjet Engine

2. The combustion of liquid fuels

3. RosnerD. E., Transport Processes in Chemically Reacting Flow Systems, Dover, Mineola, NY, 2000, pp. 20–27, 405–454.

4. The art of partial modeling

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3