Minimum Power Control Allocation for Incremental Control of Over-Actuated Transition Aircraft

Author:

Pfeifle Ole1,Fichter Walter1

Affiliation:

1. University of Stuttgart, 70569 Stuttgart, Germany

Abstract

Existing control allocation approaches usually minimize an [Formula: see text] or [Formula: see text] norm of the actuator commands that is loosely related to the thrust produced or the aerodynamic drag. This paper proposes a novel incremental control allocation method that directly minimizes the total power required for an over-actuated, propeller-driven transition aircraft. The minimum power cost function is derived in a convex form and leads to a closed-form algebraic solution for an additional command increment in the null space of the local control effectiveness matrix. The complete control allocation procedure consists of a two-step approach that is direction-preserving in the presence of actuator saturations and nonlinear due to the incremental formulation. The proposed control allocation is particularly advantageous in the case of a transition aircraft, where the tradeoff between using aerodynamic lift and vertical thrust can be solved naturally by including incremental attitude commands as virtual inputs in the minimum power control allocation. The resulting control allocation scheme allows to both maximize control authority and find minimum power trim solutions. Flight tests are performed on an over-actuated transition aircraft, showcasing the minimum power trim and control allocation without the use of flight mode switching or blending functions throughout all flight regimes.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Space and Planetary Science,Aerospace Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3