Molecular Characterization of Polyimide Film and Silicone Adhesive Outgassing Using Mass Spectrometry

Author:

Roussel Jean-FrançoisORCID,Lansade David,Leclercq Ludivine,Soares Carlos E.,Alred John M.,Martin Maxwell G.,Wong Anthony T.,Anderson John R.,Faye Delphine,Rioland GuillaumeORCID

Abstract

The prediction of contaminant levels is paramount to controlling and reducing their impact on space missions. In recent years, it has become clear that a real breakthrough could only be achieved through a change of paradigm, namely, by going beyond the classical characterization of total contaminant mass and instead characterizing the various emitted chemical species individually: both quantitatively and chemically. This paper first reviews the methodology proposed to achieve this objective and then its implementation on two examples of materials (Black Kapton® and NuSil CV4-2946) on the basis of existing ASTM-E-1559 outgassing data (Garrett, J. W., Glassford, P. M., and Steakley, J. M., “ASTM-E-1559 Method for Measuring Material Outgassing/Deposition Kinetics,” Journal of the IEST, Vol. 38, No. 1, 1995, pp. 19–28) including mass spectrometry (MS) data. We show that the thermogravimetric analysis performed on the contaminant deposits (heating at 1 K/min) allows a good enough time separation of chemical species to analyze and often identify them through their mass spectra. In turn, the knowledge of the fragments constituting their spectra allows an improved analysis of the MS data collected during the initial outgassing phase. The outgassing time profiles of each of these chemical species then tells a lot about their actual outgassing physical laws. On the two studied materials, outgassing physics were found to be consistent with Fickian or non-Fickian diffusion rather than with residence time desorption. After confirming these findings with more specific and more sensitive experiments, the door will be open to greatly improve assessments of the contaminant amounts and nature in flight through realistic multispecies physical models.

Funder

ONERA

Jet Propulsion Laboratory

Centre National d’Etudes Spatiales

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3