Dual-Altitude Band Coverage for Spaceborne Optical Sensor with Field-of-View Constraint

Author:

Sun Yangyuxi1,Wen Changxuan1ORCID,Zhu Zhengfan2ORCID,Zhang Chen3

Affiliation:

1. Beijing Institute of Technology, 100081 Beijing, People’s Republic of China

2. DFH Satellite Co., Ltd., 100094 Beijing, People’s Republic of China

3. Chinese Academy of Sciences, 100094 Beijing, People’s Republic of China

Abstract

Space-based optical monitoring systems have become promising options for space situational awareness with their advantages of observation range, duration, and quality. The dual-altitude band coverage evaluation of optical sensors is fundamental to designing and optimization of such systems. In this study, the dual-altitude band coverage evaluation of a spaceborne optical sensor with a cone field-of-view (FOV) constraint is addressed. Specifically, the target dual-altitude band region is discretized into crescent-shaped volume cells by introducing equidistant nodes along the radial and azimuth directions. When the size of each cell becomes sufficiently thin, the coverage of this cell can be approximated by the coverage of its centerline. Thus, the original dual-altitude band coverage problem is converted into a one-dimensional zenithal angular coverage problem. Then, considering geometric constraints on Earth’s occlusion and thermal background and the cone FOV constraints, we obtained the effective coverage of the azimuthal and zenithal angles of the target region by performing a comprehensive analysis of all 14 possible geometric cases. Alongside a pure coverage volume scoring method, a weighted coverage scoring method is introduced to take account of the nonuniform density distribution of space objects in altitude. Finally, the accuracy of the proposed method is validated by numerical examples.

Funder

CAST Innovation Foundation

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3