High-Lift Aerodynamics of Integrated Distributed Propulsion Systems with Thrust Vectoring

Author:

Jois Himavath1ORCID,Hong Alan S.1,Ansell Phillip J.1ORCID

Affiliation:

1. University of Illinois Urbana-Champaign, Urbana, Illinois 61801

Abstract

Recent interest in distributed electric propulsion in aeronautics has motivated the exploration of novel approaches for integrating this technology into fixed-wing aircraft. Quasi-two-dimensional wind tunnel experiments were conducted with an aeropropulsive airfoil model, which included 10 integrated electric ducted fans and trailing-edge thrust vectoring capability. The experimental model was designed based on a reference aeropropulsive system originally optimized for transonic flight conditions. The model incorporated flow conditioners to separate the capture streamtubes of each fan and transition the circular internal flow into a rectangular nozzle exit. The system angle of attack, thrust coefficient, and nozzle deflection angle were all varied throughout the study. Surface pressure data, aggregate lift, drag, and pitching moment performance, and individual fan thrust data were all collected. Experimental results show an increased lift curve slope and maximum lift coefficient with larger fan thrust alongside larger aerodynamic contributions to drag and pitching moment. Deflection of hinged flaps to vector thrust reduces the airfoil zero-lift and stall angles of attack, similar to traditional trailing-edge flaps. Finally, thrust-drag bookkeeping methods demonstrate how jet momentum and airfoil aerodynamics interact. This experiment intends to highlight the aerodynamic mechanisms through which integrated propulsors couple with airfoils to achieve high-lift performance.

Funder

Office of Naval Research

NASA Aeronautics Mission Directorate

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3