Pulsating Heat Pipe Experiments for Microgravity Sounding Rocket Tests

Author:

Guessi Domiciano Kelvin1ORCID,Krambeck Larissa1ORCID,Mantelli Marcia Barbosa Henriques1ORCID,Alonso Betancur Arboleda Luis2

Affiliation:

1. Federal University of Santa Catarina, 88040-900 Florianopolis, Brazil

2. Santander Technological Units, 680005 Santander, Colombia

Abstract

Two flat plate diffusion-bonded pulsating heat pipes (PHPs) for the thermal management and heat dissipation of concentrated heat flux in electronics applications, such as aboard satellites and spacecraft, were specially developed for future tests aboard a sounding rocket in microgravity conditions. Both devices contain 26 channels with round cross sections, one with ultrasharp lateral grooves in the evaporator. Two heat sinks were tested: a water-cooling bath for the thermal characterization of the PHPs, and a copper box with a phase change material (dodecahydrate bibasic sodium phosphate) to be qualified as the heat storage for future microgravity tests. Water was used as the working fluid. The best filling ratio (relative to the total internal volume of the PHPs) was experimentally determined to be 50%, for which the devices presented the earliest startup and the lowest thermal resistance, around 0.033°C/W for the grooved PHP. This research proposes an efficient and alternative cooling method, the phase change material storage, to be used as a heat sink in future microgravity tests. Also, the microgravity effect on the thermal performance of such PHPs can be assessed by comparing the present results with future microgravity data obtained in an experimental module aboard a sounding rocket.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3