Buckling and Fundamental Frequency Optimization of Tow-Steered Composites Using Layerwise Structural Models

Author:

Racionero Sánchez-Majano Alberto1ORCID,Pagani Alfonso1ORCID

Affiliation:

1. Polytechnic University of Turin, 10129 Turin, Italy

Abstract

Variable-angle-tow (VAT) composite laminates can eventually improve the mechanical performance of lightweight structures by taking advantage of a larger design space compared to straight-fiber counterparts. Here, we provide a scalable low- to high-fidelity methodology to retrieve the tow angles that maximize the buckling load and the fundamental frequency of VAT plates. A genetic algorithm is used to solve the optimization problem in which the objective function is mimicked using a surrogate model. Both unconstrained and manufactured-constrained problems are solved. The surrogates are built with outcomes from numerical models generated by means of the Carrera unified formulation, which enables to obtain straightforwardly different degrees of accuracy by selecting the order of the structural theory employed. The results show both the validity and flexibility of the proposed design approach. It is shown that, although the optimal design fiber angle orientations are consistently similar, discrepancies in the prediction of the buckling load or fundamental frequency can be found between high-fidelity layerwise and low-to-refined equivalent-single-layer models, of which classical laminated plate or first-shear deformation theories are degenerate examples.

Funder

H2020 European Research Council

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3