Affiliation:
1. Harbin Institute of Technology, 150001 Harbin, People’s Republic of China
Abstract
Hydrogen is the most promising fuel for reducing carbon emissions, but hydrogen combustion produces higher temperature compared to hydrocarbon fuel. In this paper, a three-dimensional compressible combustion–flow–heat transfer model of combustor was established, and a dry-low-emission combustor was examined by using the realizable [Formula: see text] model, transported probability density function, and discrete ordinates model combining weighted sum of gray gas model, analyzing the effects of hydrogen/methane blended fuel and thermal boundaries on the combustor thermal environment. The results show that when the fuel hydrogen volume percentage increases from 0 to 75%, the maximum gas temperature and [Formula: see text] concentration on the central axis of the combustor increase by about 160.8 and 662.9%, respectively; the maximum incident radiant heat flux of the combustor wall increases by about 150%; and the local maximum ratio of the radiant heat transfer to the total heat transfer through the wall increases from about 34 to about 49%. The effect of the boundary conditions varies depending on the hydrogen percentage. At the hydrogen percentage of 75%, the maximum wall-incident radiant heat flux under the adiabatic condition is nearly 180.3 and 77.4% higher than the values at 1370 and 1920 K isothermal boundaries, respectively.
Funder
National Natural Science Foundation of China
National Science and Technology Major Project
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering