Simulation of Oxygen Chemical Kinetics Behind Incident and Reflected Shocks via Master Equation

Author:

Baluckram Varishth T.1,Fangman Alexander J.1,Andrienko Daniil A.1

Affiliation:

1. Texas A&M University, College Station, Texas 77840

Abstract

A model for simulating postshock conditions using only state-resolved kinetic data of ab initio accuracy is presented. The quasi-classical trajectory method is used to compute a vibrational-specific kinetic database that describes internal energy transfer and dissociation in a nonionizing oxygen mixture. The kinetic database is implemented in a system of master equations and coupled to conservation laws to simulate a series of conditions, including zero-dimensional adiabatic reservoir, one-dimensional postincident, and one-dimensional postreflected shock relaxation. The present results are in excellent agreement with temperature profiles produced by the direct molecular simulation method at a fraction of cost. For the first time, the state-resolved model is applied to model relaxation behind a reflected shock passing through a thermally nonequilibrium gas. Model validation is made via comparisons to the experiments of Ibraguimova et al. (Journal of Chemical Physics, Vol. 139, No. 3, 2013, Paper 034317) and Streicher et al. (Physics of Fluids, Vol. 33, No. 5, 2021, Paper 056107). It is shown that neglecting relaxation in the postincident shock region may lead to nonnegligible errors in determining initial postreflected shock translational and vibrational temperatures, particularly in cases where the test gas is not diluted with an inert species.

Funder

Lockheed Martin

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3