Affiliation:
1. Xinjiang Agricultural University, 830052 Xinjiang, People’s Republic of China
Abstract
Melting processes of phase change material (PCM) confined in a rectangular cavity with an isothermal vertical wall are investigated to quantify the transition criterion between different melting regimes. A series of numerical simulations are conducted via the phase-change lattice Boltzmann method, and the results show that the temperature field in the liquid PCM region changes from the structure with two thermal boundary layers to the structure with two thermal boundary layers plus a convection region. Moreover, the results also indicate that the heat transfer mechanism undergoes a transition from conduction to convection when the relative thickness between the convention region and the thermal boundary reaches a critical value. This value (transition criterion) can be quantified by the critical melted volume fraction, and its dependence on Rayleigh number, Prandtl number, and aspect ratio of cavity is theoretically derived in this study. Then, based on the transition criterion, a piecewise correlation of melted volume fraction is proposed, which considers the effect of different melting regimes and is proven to predict the literature’s result.
Funder
CAREC Corridor Performance Measurement and Monitoring (CPMM) Project
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献