Laser-Induced Diaphragm Rupture for Improved Sequencing and Repeatability in a Hypersonic Facility

Author:

Birch Byrenn1ORCID,Buttsworth David1,Zander Fabian1

Affiliation:

1. University of Southern Queensland, Toowoomba, Queensland 4350, Australia

Abstract

For hypersonic facilities where the flow conditions are established through the rupture of a diaphragm, such as in the University of Southern Queensland’s hypersonic wind-tunnel facility, the variability in the flow conditions is related to the uncertainty of the pressure at which the diaphragm ruptures. Variability in the diaphragm rupture pressure also results in uncertainty of the time at which the diaphragm will rupture. For experiments that require knowledge of when the test flow will be initiated, the sequencing of events relative to the flow onset is difficult when the flow is initiated using the natural rupture of a diaphragm. The challenge of experiment sequencing that arises due to rupture pressure variability is addressed by introducing a laser for rapid thermal weakening of the diaphragm. Event sequencing challenges are discussed in the context of free-flight testing, including model release strategies for such testing. The work proceeds through a review of Ludwieg tube flow initiation strategies and a discussion of the present context, which requires a reliable method for sequencing the retraction of the free-flight model holder. The natural variability of strength of the Mylar diaphragms in the present work is found to result in around [Formula: see text] uncertainty in rupture pressure. This rupture pressure variability is demonstrated to have a significant temperature dependence through empirical results and engineering models. Implementation of the laser-induced diaphragm rupture method is demonstrated to enhance repeatability in generating the flow conditions; the variability in rupture pressure was reduced to [Formula: see text] when the laser method was used. Based on the remaining sequencing uncertainties with the laser-induced rupture method and practical speeds for model platform retraction, uncertainty in the positioning of the free-flight models at the time of flow onset is shown to be [Formula: see text].

Funder

Australian Government through the Australian Research Council

Australian Department of Defence.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3