Investigation of a Near-Field Cylinder Wake in the Subsonic, Transonic, and Supersonic Regimes

Author:

Baidya RioORCID,Scharnowski Sven,de Silva Charitha M.,Awasthi Manuj,Kähler Christian J.1

Affiliation:

1. University of the Bundeswehr Munich, 85577 Neubiberg, Germany

Abstract

The near wake of a circular cylinder in a high-Reynolds-number regime is investigated using the particle image velocimetry technique for an inflow Mach number spanning 0.3 to 2. The mean flow and turbulent kinetic energy field for different Mach number cases are presented. Furthermore, the influence of the Reynolds and Mach number effects is examined based on the mean separation point along the cylinder surface, which is extracted from complementary schlieren visualization measurements, and the literature. The wake width for the supersonic inflow case is found to be an order of magnitude smaller physically than the subsonic case with an identical cylinder diameter. Additionally, the swirl strength criterion is used to identify the eddies present within the wake, and the eddy size and convection velocity are characterized based on the spatiotemporal correlations. The result suggests that the mean wake features for the subsonic and supersonic cases are very different. Moreover, the interaction of eddies generated at the cylinder’s top and bottom shear layers leads to the large-scale features present in the wake, and the differing paths followed by the eddies between the subsonic and supersonic cases are responsible for the variation in the observed wake width.

Funder

Deutsche Forschungsgemeinschaft

Deutscher Akademischer Austauschdienst

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3