Machine Learning Strategy for Wall Heat Flux Prediction in Aerodynamic Heating

Author:

Dai Gang1,Zhao Wenwen1ORCID,Yao Shaobo1,Chen Weifang1

Affiliation:

1. Zhejiang University, 310027 Hangzhou, People’s Republic of China

Abstract

The efficient and accurate prediction of the aeroheating performance of hypersonic vehicles is a challenging task in the thermal protection system structure design process, which is greatly affected by grid distribution, numerical schemes, and iterative steps. From the inspiration of the theoretical analysis and machine learning strategy, a new wall heat flux prediction framework is proposed first by establishing the relationship between the wall heat flux and the flow variables at an extreme temperature point (ETP) in the normal direction of the corresponding wall grid cell, which is named the machine learning (ML)-ETP method. In the training phase, the flow properties and their gradients at the ETP and the distance from the ETP normal to the wall are employed as feature values, and the accurate wall heat flux predicted by the converged fine grid is regarded as the tag value. With the assistance of the trained regression model, the heat flux of the same configuration with a coarse grid in the wall-normal direction could be predicted accurately and efficiently. Moreover, test cases of different configurations and inflow conditions with a coarse grid are also carried out to assess the model’s generalization performance. All comparison results demonstrate that the ML-ETP strategy could predict wall heat flux more rapidly and accurately than the traditional numerical method due to its nonstrict grid distribution requirements. The improvement of the predictive capability of the coarse-graining model could make the ML-ETP method an effective tool in hypersonic engineering applications, especially for unsteady ablation simulations or aerothermal optimizations.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3