Affiliation:
1. Laval University, Quebec City, Quebec G1V 0A6, Canada
Abstract
The impact of single and double Gurney flaps of heights within the range of [Formula: see text] is determined for a typical symmetrical airfoil (NACA 0015) by numerical simulations using an unsteady Reynolds-averaged Navier–Stokes approach. The optimal scaling of the Gurney flap to maximize the lift-to-drag ratio of the airfoil is revisited and confirmed to depend on the boundary-layer thickness in the region where it is deployed. Appropriate scaling rules for both single and double Gurney flap are proposed. Studying the Gurney flap’s pressure distribution at a finely resolved level highlights its effect on the overall foil’s pressure distribution. Finally, the unsteady simulations carried out are harnessed to determine the shedding frequencies generated by the flaps and the flow structures associated with them, hinting at the physical mechanisms by which Gurney flaps may increase lift at a low drag cost, thus improving the lift-to-drag ratio of the airfoil.
Funder
Natural Sciences and Engineering Research Council of Canada
Calcul Québec
Digital Research Alliance of Canada
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献