Full-Envelope Flight Control for Compound Vertical Takeoff and Landing Aircraft

Author:

KAI Jean-Marie1

Affiliation:

1. Safran Tech, Magny-Les-Hameaux, France

Abstract

This paper presents a flight control design for compound vertical takeoff and landing (VTOL) vehicles. With their multitude of degrees of controllability as well as the significant variations in their flight characteristics, VTOL vehicles present challenges when it comes to designing their flight control system, especially for the transition phase where the vehicle transitions between near-hovering and high-speed wing-borne flights. This work extends previous research on the design of unified and generic control laws that can be applied to a broad class of vehicles such as hovering vehicles and fixed-wing aircraft. This paper exploits this unifying property and presents an extension for the case of compound VTOL vehicles. The proposed control approach consists of nonlinear geometric control laws that are continuously applicable over the entire flight envelope, excluding the use of switching policies between different control algorithms. A transition strategy consisting of a sequence of high-level set points is associated with the flight control laws; it is defined with respect to flight envelope limitations and is applied in this work to a commercially available compound unmanned aerial vehicle. The control algorithms are implemented on a Pixhawk controller; they are evaluated via hardware-in-the-loop simulations and finally validated in a flight experiment.

Funder

Safran

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3