Quantification of the Effect of Simultaneous Tri-Axis over Sequential Single-Axis Vibration Testing

Author:

Nath Narendra1ORCID,Aglietti Guglielmo S.1ORCID

Affiliation:

1. University of Auckland, Auckland 1010, New Zealand

Abstract

The launch mechanical environment presents a multi-axis random vibration excitation to the launch vehicles and spacecraft payloads. However, ground vibration testing of these systems abides by sequential, single-axis inputs, enveloping flight vibration levels along individual axes. The actual vibration direction depends on the excited mode shapes, and in general it is not precisely aligned with any given reference axis of the article. The response acceleration could be in any direction, with strong local variations expected, depending on both the properties of the structure of interest and the applied loads. In this paper, it is first shown that matching all response acceleration components due to a realistic environment by single-axis testing is, in general, impossible. Subsequently, minimum amplification factors for single axis to match realistic reference environments are quantified, such that both acceleration responses and elemental stresses were covered for the whole spacecraft in at least one of the uniaxial tests. This procedure was repeated for five different realistic spacecraft models. It was found that a consistent amplification factor and, respectively, overtesting, were necessary for the single-axis excitation sequence to properly validate the articles’ survivability against the true mechanical launch loads.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3