Affiliation:
1. French-German Research Institute of Saint-Louis, 68300 Saint-Louis, France
2. Bundeswehr University Munich, 85577 Neubiberg, Germany
Abstract
A numerical solver is developed for the modeling of electric discharges in high-speed flows. For the formulation of the physicochemical model, common electric discharge modeling approaches are combined with detailed models for nonequilibrium aerothermodynamics and finite-rate chemical kinetics. The physicochemical model is based on the single-fluid assumption and takes into account the thermal and chemical nonequilibria in the gas mixture. For the numerical implementation, the finite-volume-based open-source CFD software package OpenFOAM is used. The verification of the calculation models for thermodynamic and transport properties as well as finite-rate chemical kinetics is carried out by means of one-dimensional simulations. The first validation of the solver is carried out by means of a three-dimensional simulation of an electric discharge with a constant input power of 10 kW generated on the surface of a wedge in a supersonic nitrogen flow. The numerically obtained results are compared with corresponding experimental measurements and theoretical calculations and show a fair agreement. The numerically calculated maximum temperature values, for example, are 20–40% above the measured values. However, it should be noted that the experimentally obtained values represent a spatial integration over the entire measurement volume and therefore do not indicate maximum temperature values.
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering