DeepDispatch: Deep Reinforcement Learning-Based Vehicle Dispatch Algorithm for Advanced Air Mobility

Author:

Varnousfaderani Elaheh Sabziyan1,Shihab Syed A. M.1,Dulia Esrat F.1

Affiliation:

1. Kent State University, Kent, Ohio 44242

Abstract

Near-future air taxi operations with electric vertical takeoff and landing aircraft will be constrained by the need for frequent recharging and limited takeoff and landing pads in vertiports and will be subject to time-varying demand and electricity prices, making the dispatch problem unique and particularly challenging to solve. Previously, the authors have developed optimization models to address this problem. Such optimization models, however, suffer from prohibitively high computational run times when the scale of the problem increases, making them less practical for real-world implementation. To overcome this issue, the authors have developed two deep reinforcement learning-based dispatch algorithms, namely, single-agent and multi-agent double dueling deep Q-network dispatch algorithms, where the objective is to maximize operating profit. A passenger transportation simulation environment was built to assess the performance of these algorithms across 36 numerical cases with varying numbers of vehicles and vertiports and amounts of demand. The results indicate that the multi-agent dispatch algorithm can closely approximate the optimal dispatch policy with significantly less computational expenses compared to the benchmark optimization model. The multi-agent algorithm was found to outperform the single-agent counterpart with respect to both profits generated and training time. Additionally, we implemented a heuristic-based algorithm, faster but less effective in generating profits compared to our two deep reinforcement learning-based algorithms.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3