Thermohydraulic Performance Intensification of Wavy, Double-Layered Microchannel Heat Sink with Height Tapering

Author:

Borah Santanu1,Ranjan Tamuli Bhaskar1,Bhanja Dipankar1ORCID

Affiliation:

1. National Institute of Technology Silchar, Assam 788 010, India

Abstract

Thermohydraulic performance analysis of a wavy, tapered, double-layered microchannel heat sink is done numerically. The coolant used is water with temperature-dependent properties in single-phase flow considering Reynolds number in the range of 100–500. Uniform heat flux at the base of the microchannel heat sink is applied. The study suggested that the tapered, wavy channel has given better thermal performance than the straight, wavy channel; however, pressure drop has increased. Also, a comparison with a smooth, tapered, double-layered microchannel heat sink showed 13.6% enhancement on overall performance with wave [Formula: see text], [Formula: see text], Reynolds [Formula: see text], and tapering [Formula: see text] when all three plates of the double-layered microchannel heat sink are considered wavy. Moreover, it has also been observed that considering only the middle plate wavy, the cost of fabrication could be minimized and still similar enhancement over a smooth, double-layered microchannel heat sink could be obtained.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Condensed Matter Physics,Aerospace Engineering,Space and Planetary Science,Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3