Evaluation of Optical Window Integrity Under Wall Heat Flux of Scramjet Intake

Author:

Kim Gyeongrok1,Shim Hanseul1,Jung Sion1,Park Gisu1,Hong Min Tae2

Affiliation:

1. Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

2. Agency for Defense Development, Daejeon 34186, Republic of Korea

Abstract

The structural integrity of sapphire optical windows was numerically and experimentally evaluated under the wall heat flux of the scramjet intake. The considered heating profile was [Formula: see text] during 60 s, and the heating profile for the numerical and experimental approaches was the same. A numerical study was performed using the finite element method; the numerical results predicted that the maximum temperature of the optical window under the heating condition was about 600 K, the maximum principal stress was less than the strength of the sapphire, and the failure of the optical window would not occur based on the brittle Coulomb–Mohr material failure theory. The heating test was performed using an electrical heater under the heating condition, and the morphology was investigated using scanning electron and atomic force microscopies. The experimental results indicated that no cracks or fractures occurred on the surface of the optical window after the heating test, except for a slight change in the shape and roughness of the microstructure.

Funder

Agency for Defense Development

Korean Government

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3