Fluid–Structure Coupled Analysis of Maneuver Load Alleviation on a Large Transport Aircraft

Author:

Breitenstein Christian1,Müller Jens,Hillebrand MarcoORCID,Woidt Malte,Haupt Matthias,Radespiel Rolf1

Affiliation:

1. Technische Universität Braunschweig, 38108 Braunschweig, Germany

Abstract

Fluid–structure coupled simulations are performed for quasi-steady pitching maneuvers of a large transport aircraft with a load alleviation system consisting of trailing edge flaps and droop noses at the leading edge. For the fluid part of the simulation, a RANS approach is used, whereas the structural simulation is based on a linear modal model. The selected maneuvers are located on the lift boundary of the maneuver envelope at maximum load factor, as not only are the structural loads high here, but also redistributing lift for load alleviation is especially challenging as the wing is close to stall. For a target value of 33% reduction in wing bending loads, which is derived from the CS-25, the effects of applying load alleviation on wing loads, deformations, and aircraft maneuverability are investigated. It is found that the desired reduction of wing bending loads can be achieved for all maneuvers considered, while controlling the torsional moment turns out to be more difficult. A loss of maneuverability due to load alleviation is observed for only one of the maneuvers, while for the other maneuvers, maneuverability could even be increased. To assess the influence of the elasticity of the wing, additional simulations of the rigid wing are carried out and compared with the elastic results. Finally, other potential applications of the considered flap system are also explored. Here, for example, a cruise drag reduction of up to 1.8% is possible by adjusting the spanwise lift distribution.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3