Operation and Power Generation of a Disk-Shaped Pressure Gain Combustor

Author:

Huang Xin1ORCID,Chang Po-Hsiung1,Li Jiun-Ming1,Juay Teo Chiang1ORCID,Cheong Khoo Boo1

Affiliation:

1. National University of Singapore, Singapore 117411, Republic of Singapore

Abstract

The objective of this experimental study is to evaluate the power generation capability of an ethylene–air disk-shaped pressure gain combustor (DPGC). The main content of this paper focuses on discussing the DPGC testing results, consisting of detonation wave dynamics, power generation, and accompanying combustion instabilities. The experiments can be grouped into two stages. In the first stage, the DPGC was tested under atmospheric back condition. Continuous detonation wave dynamics were evaluated among various testing conditions. Evolution of the detonation wave velocity with respect to changes in the equivalence ratio has been discussed. In the second stage of the experiments, the DPGC was tested with a turbocharger installed. Shaft power extracted by the turbocharger turbine from the DPGC exhaust was used as a metric for evaluating the DPGC power output. During the operation of the DPGC and turbocharger, low- and intermediate-frequency combustion instabilities were observed, which coexisted with the high-frequency component associated with the circumferentially propagating detonation wave. The experimental results suggest that the DPGC shows superiority in compactness relative to conventional combustion power systems. However, more improvements need to be made with regard to overall thermal efficiency in order to achieve the benefits from detonation combustion.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3