Direct–Indirect Hybrid Strategy for Optimal Powered Descent and Landing

Author:

Spada Fabio1ORCID,Sagliano Marco2ORCID,Topputo Francesco3ORCID

Affiliation:

1. Polytechnic University of Milan, 20133 Milan, Italy

2. DLR, German Aerospace Center, 28359 Bremen, Germany

3. Polytechnic University of Milan, 20156 Milan, Italy

Abstract

A hybrid algorithm to solve optimal control problems is discussed in the present paper and applied to the powered descent guidance (PDG) problem. A reference solution is first obtained via a convex direct solver and is then used as guess for the primal–dual boundary-value problem associated with the initial problem. In this context, a covector mapping theorem is used to map the multipliers of the direct solution to the corresponding discrete costates of the indirect method. Collocation based on hp pseudospectral scheme is employed for the convex direct step, while single shooting is used for the indirect step. A switching-detection technique further equips the shooting. As opposed to the hybrid convex-indirect algorithm, a state-of-the-art purely indirect algorithm is outlined; such approach merges the same single shooting approach with a homotopic continuation. The proposed methods are applied to the pinpoint landing formulation of the PDG, framed in a three-dimensional environment. The results are finally outlined, comparing the proposed hybrid strategy to the purely indirect approach. The outcome highlights the gain in computational times for the hybrid optimization technique over the fully homotopic scheme, demonstrating the validity of the former for landing trajectory optimization purposes.

Funder

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Aerospace Engineering

Reference53 articles.

1. BrysonA. E.HoY., Applied Optimal Control: Optimization, Estimation and Control, Taylor and Francis, Boca Raton, FL, 1975, pp. 48, 215.

2. Interior-Point Polynomial Algorithms in Convex Programming

3. Convex Programming Approach to Powered Descent Guidance for Mars Landing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3