Affiliation:
1. RMIT University, Melbourne, Victoria 3000, Australia
Abstract
A wide variety of models and methods for the prediction of the surface pressure spectrum beneath turbulent boundary layers is presented and assessed. A thorough review is made of the current state of the art in empirical and analytical pressure spectrum models; and predictions of zero, adverse, favorable, and nonequilibrium pressure gradient boundary layers are examined using a steady Reynolds-averaged Navier–Stokes (RANS) prediction of a subset of a pressure gradient boundary-layer benchmark flow case. The existing empirical models show either an inability to adapt to pressure gradient conditions or an oversensitivity to model inputs, producing nonphysical results under certain flow conditions. New empirical models are created using a gene expression programming machine-learning algorithm based on both experimental and RANS inputs. The various input options for analytical Toegepast Natuurwetenschappelijk Onderzoek (TNO) modeling are presented and assessed, and recommendations for best practices are made. The developed models show improvement in both accuracy and robustness over existing models.
Funder
Office of Naval Research Global
Office of Naval Research
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献