Machine-Learning-Based Rotating Detonation Engine Diagnostics: Evaluation for Application in Experimental Facilities

Author:

Johnson Kristyn B.1,Ferguson Don1,Nix Andrew2

Affiliation:

1. National Energy Technology Laboratory, Morgantown, West Virginia 26505

2. West Virginia University, Morgantown, West Virginia 26505

Abstract

Real-time monitoring of combustion behavior is a crucial step toward actively controlled rotating detonation engine (RDE) operation in laboratory and industrial environments. Various machine learning methods have been developed to advance diagnostic efficiencies from conventional postprocessing efforts to real-time methods. This work evaluates and compares conventional techniques alongside convolutional neural network (CNN) architectures trained in previous studies, including image classification, object detection, and time series classification, according to metrics affecting diagnostic feasibility, external applicability, and performance. Real-time, capable diagnostics are deployed and evaluated using an altered experimental setup. Image-based CNNs are applied to externally provided images to approximate dataset restrictions. Image classification using high-speed chemiluminescence images and time series classification using high-speed flame ionization and pressure measurements achieve classification speeds enabling real-time diagnostic capabilities, averaging laboratory-deployed diagnostic feedback rates of 4–5 Hz. Object detection achieves the most refined resolution of [Formula: see text] in postprocessing. Image and time series classification require the additional correlation of sensor data, extending their time-step resolutions to 80 ms. Comparisons show that no single diagnostic approach outperforms its competitors across all metrics. This finding justifies the need for a machine learning portfolio containing a host of networks to address specific needs throughout the RDE research community.

Funder

National Energy Technology Laboratory

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Space and Planetary Science,Mechanical Engineering,Fuel Technology,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3