Airfoil Design Framework for Optimized Boundary-Layer Integral Parameters

Author:

Collazo Garcia Armando R.1,Ansell Phillip J.2

Affiliation:

1. The Boeing Company, Saint Louis, Missouri 63134

2. University of Illinois Urbana-Champaign, Urbana, Illinois 61801

Abstract

An airfoil design framework is introduced in which boundary-layer integral parameters serve as the driving design mechanism. The method consists of generating a parameterized pressure distribution capable of producing the desired boundary-layer characteristics for inverse design use. Additionally, by deduction from the Squire–Young theory, the method allows for the determination of the pressure distribution that results in the minimum theoretical drag. To assess this design framework, several airfoils were developed based on the mission requirements of the RQ-4B Global Hawk aircraft. Numerical results obtained using a viscous-inviscid solver of the integral boundary layer and Euler equations showed that the optimized airfoils achieved profile drag reductions of 9.06 and 6.00%, respectively, for [Formula: see text] and [Formula: see text] design points. A validation experimental campaign was also performed using the optimized CA5427-72 airfoil. The acquired data produced the expected pressure distribution characteristics and aerodynamic performance improvements, typifying the efficacy of the design framework.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Reference50 articles.

1. Computational Fluid Dynamics

2. EpplerR.SomersD. M. “A Computer Program for the Design and Analysis of Low-Speed Airfoils,” NASA TM-80210, 1980, Chap. 3.

3. Airfoil Design and Data

4. Multipoint inverse airfoil design method based on conformal mapping

5. Generalized multipoint inverse airfoil design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3