Physics-Informed Machine Learning Using Low-Fidelity Flowfields for Inverse Airfoil Shape Design

Author:

Wong Benjamin Y. J.1ORCID,Damodaran Murali1,Khoo Boo Cheong1

Affiliation:

1. National University of Singapore, Singapore 117411, Republic of Singapore

Abstract

Physics-informed neural networks (PINNs) are a class of scientific machine learning that utilizes differential equations in loss formulations to model physical quantities. Despite recent developments, complex phenomena such as high-Reynolds-number (high-[Formula: see text]) flow remain a modeling challenge without the use of high-fidelity inputs. In this study, a low-fidelity-influenced physics-informed neural network (LF-PINN) is proposed as a surrogate aerodynamic analysis model for inverse airfoil shape design at [Formula: see text]. The LF-PINN is developed in a hybrid approach using low-fidelity flowfields approximated from a viscous-inviscid coupled airfoil analysis tool (mfoil) and physics residuals from the steady, incompressible, two-dimensional Navier–Stokes (NS) equations. The approach is designed to alleviate offline computational costs by avoiding high-fidelity simulations and sustain predicting accuracy using corrections by the physics residuals. The LF-PINN is able to correct the low-fidelity flowfield quantities toward the ground truth, with a mean improvement of about 19% in pressure and about 5% in total velocity based on Euclidean distance comparisons. Evaluation of the airfoil surface pressure coefficient [Formula: see text] distributions shows corrections by the LF-PINN at the suction peak, which largely contributes to lifting forces. Inverse airfoil shape design is conducted using target [Formula: see text] distributions in the objective function, whereby the LF-PINN can approach the expected target shapes while reducing online computational time by at least an order of magnitude compared to direct airfoil analysis tools.

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3